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Introduction 
 

A Nuclear Regulatory Commission (NRC) sponsored workshop entitled 
“NRC/USGS Workshop on Landslide Probability” was held on August 18-19 at the U.S. 
Geological Survey (USGS) Woods Hole Science Center in Woods Hole, Massachusetts.  
Academic, industry, and government participants provided an overview of topics that 
included geological characterization of submarine landslides, geotechnical techniques 
and measurements of slope stability, hydrodynamic modeling of landslide-generated 
tsunamis, and probabilistic methods for hazard assessment.  The goal of the workshop 
was to bring together experts who study the geometry and recurrence of slope failures, 
their geotechnical properties, their potential tsunami generation, and the probability of 
recurrence of extreme events, to answer the following questions: 

A) Using current data, what can we say about the probability for submarine mass 
failures? 
B) How do we treat the dynamics of landslide movement probabilistically? 
C) How do we treat propagation and runup of tsunami waves probabilistically? 
D) What new probabilistic methods can be developed specifically for submarine 
mass failures? 

Although probability is mentioned in all of these questions, a probabilistic assessment is 
only as good as the underlying data and assumptions; therefore, it is critical that we 
address the state of knowledge and the kinds of new data that needs to be collected to 
improve our ability to estimate probability of occurrence. 
 Currently, tsunami hazards are evaluated by the NRC for new license applications 
in terms of determining the probable maximum tsunami (PMT) defined as (González and 
others, 2007; Prasad, 2009): 
 

…that tsunami for which the impact at the site is derived from the use of 
best available scientific information to arrive at a set of scenarios 
reasonably expected to affect the nuclear power plant site, taking into 
account (1) appropriate consideration of the most severe of the natural 
phenomena that have been historically reported for the site and 
surrounding area, with sufficient margin for the limited accuracy, 
quantity, and period of time in which the historical data have been 
accumulated; (2) appropriate combinations of the effects of normal and 
accident conditions with the effects of the natural phenomena; and (3) the 
importance of the safety functions to be performed. 

 
In contrast, seismic hazards are evaluated by the NRC in terms of probabilistic 

methods (Senior Seismic Hazard Analysis Committee, 1997).  There is ongoing research 
to explore whether tsunami hazards can be evaluated at design probabilities of interest to 
the NRC using probabilistic tsunami hazard analysis (PTHA). PTHA is closely akin to 
probabilistic seismic hazard analysis (PSHA) (Cornell, 1968; Senior Seismic Hazard 
Analysis Committee, 1997).  A primary difference between PTHA and PSHA is that 
numerical propagation models can be used for tsunamis in place of seismic attenuation 
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relations (Geist and Parsons, 2006; Geist and others, 2009b).  The distinct disadvantage 
of PTHA at very low probabilities, such as for nuclear power plant applications, is the 
need to include submarine landslides in the analysis.  Recurrence information for 
submarine landslides is uncertain or altogether lacking in some regions, resulting high 
uncertainty in the source term for probabilistic analysis, compared to earthquake 
recurrence. 
 For the last several years, the USGS has done research to identify and date 
significant submarine landslides along the western Atlantic margin of the U.S. and the 
Gulf of Mexico (ten Brink and others, 2009a).  Recent efforts have focused on how 
submarine landslide probability might be determined using available geological and 
geophysical information and identifying the challenges of incorporating this information 
into PTHA.  Much of the research to date is described in this report, culminating in the 
August 2011 Woods Hole workshop that highlighted current research from academic, 
industry, and government scientists in the U.S. 

Pre-‐Workshop	  Research	  
 Prior to the workshop, information was gathered related to the theoretical 
background for determining submarine landslide probability and incorporation of 
landslides into PTHA.  This information is presented below, divided into the general 
probabilistic framework of PTHA, submarine landslide dynamics as it relates to tsunami 
generation, and probabilistic approaches for determining landslide rates.  Included after 
these sections are specific challenges related to determining submarine landslide 
probability and its inclusion into PTHA, as well as a section on potential future science 
directions. 

Workshop	  Presentations	  
 The abstracts and presentations that were given at the workshop are included in 
the appendix of this report. The presentations were grouped into four sessions: (1) 
landslide geometry and recurrence; (2) landslide mechanics; (3) modeling landslide 
tsunamis; and (4) probability of landslides and landslide tsunamis. 
 The landslide geometry and recurrence session included an overview talk on how 
submarine landslides are identified, including potential pitfalls (Lee presentation) and an 
overview of mapped landslides in the Gulf of Mexico and U.S. Atlantic margins 
(Twichell presentation).  Details of various techniques used to date submarine landslides 
and sediment transport processes associated with landslides were given in the Chaytor 
and Brothers presentations, respectively. 
 The first three talks in the landslide mechanics session focused on geotechnical 
characterization of slope stability, including a technique for determining landslide 
occurrence given information on earthquake ground-shaking probabilities and 
bathymetric slope (ten Brink presentation).  The DeGroot presentation provided specific 
information on state-of-the art instrumentation to provide geotechnical characterization of 
the seafloor.  An overview of geotechnical considerations for landslide occurrence was 
provided in the Locat presentation, followed by a presentation of a newly-developed 
numerical model for simulating landslide dynamics (George presentation). 
 The modeling landslide tsunamis session focused on state-of-the art 
hydrodynamic modeling of long- and intermediate-length waves associated with this 
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unique type of tsunami.  Conventional 2-horizontal dimension (2HD) models were 
compared with 3D models in the Horrillo presentation and laboratory experiments used to 
validate hydrodynamic models were described in the Grilli presentation.  In the Lynett 
presentation, non-linear Boussinesq-type models were used to show how probabilistic 
variations in down-slope landslide length can be evaluated.  For the final presentation in 
this session, González showed how numerical hydrodynamic models are used in PTHA, 
providing a transition to the final session of the workshop. 
 The probability of landslides and landslide tsunamis session began with a 
presentation of how PTHA has been applied in the Pacific Basin and how disaggregation 
can provide important information about which source regions dominate the probabilistic 
calculations (Thio presentation).  A version of PTHA specific to submarine landslides 
was presented by Baxter, in which geotechnical calculations were combined with 
tsunami-scaling relations for the U.S. east coast to estimate tsunami hazards.  A method 
to determine landslide probabilities over a broad region by using seafloor databases, such 
as usSEABED, was presented by Morgan.  Results of the workshop were synthesized 
into a presentation about the approaches and challenges of incorporating submarine 
landslides into PTHA (Geist presentation).  
 The workshop presentations provided a sampling of current thinking related to 
submarine landslides, their probability, and the complex hydrodynamics of landslide 
tsunamis.  Details of each presentation are provided in the appendix. 
 

General Probabilistic Framework 
Probabilistic Tsunami Hazard Analysis (PTHA) is derived directly from 

Probabilistic Seismic Hazard Analysis (PSHA) developed by Allin Cornell in 1968 
(Cornell, 1968). PTHA calculates the rate of tsunamis exceeding a particular runup value 
at a particular location at the coastline, given by 

 
 

The rate is used in the calculation of Poisson probabilities, and it typically is assumed that 
the rate does not change with time. The probability (P) over T years that runup will be 
exceeded is given by 

. 
 

Both PSHA and PTHA includes three steps: 
(1) Define source parameters, including source probabilities, for all relevant sources. 
(2) Calculate wave heights from a generation and propagation model for each source. 
(3) Aggregate the results to determine the tsunami hazard curve for a particular coastal 
site. 
 

Probabilistic	  Seismic	  Hazard	  Analysis	  Equation	  
The PSHA framework equation to determine the rate of ground motion 

exceedance (A > A0) for multiple-source locations indexed by i is given by (Senior 
Seismic Hazard Analysis Committee, 1997)  
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. 
 

In the above equation, r is the distance from the source to the site,  
 

is the mean rate of occurrence of all earthquakes at location i, f(m) is the probability 
density function (pdf) for magnitude, and f(r|m) is the pdf for distance for a given 
magnitude. 

 
 

is the complementary cumulative distribution function for the ground-motion attenuation 
relationship, dependent on magnitude and distance. 

Probabilistic	  Tsunami	  Hazard	  Analysis	  Equation	  (Continuously	  Distributed	  
Sources)	  
 

The PTHA framework equation for multiple tsunami sources is related to the 
PSHA equation, except that multiple types of sources are involved and that the ground-
motion attenuation relationship is substituted with numerical tsunami generation and 
propagations. The PTHA equation for continuously distributed sources is given by (Geist 
and others, 2009b)  

 
, 

 
where, i is an index that represents source type (for example, earthquake, debris flow, 
mud flow, volcanic flank failure) r is the distance from the source to a shoreline location, 

 
is the mean rate for each source, and 

 
represents the primary source parameter or set of source parameters (Ward, 2001) for that 
source. The mean rate is then multiplied by a double integral that contains three 
probability functions.  The function 

 
 

is the probability density function (pdf) for the source parameter. For example, the 
primary source parameter for earthquakes is seismic moment and, therefore, this pdf 
would be a modified power-law distribution.  The function 
 

 
 

is the pdf of the distance for given source parameters and 
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is the cumulative conditional probability that runup at a coastal location will be exceeded 
for a given distance and given source parameters. This expression is calculated using 
tsunami generation and propagation models.  
 

Probabilistic	  Tsunami	  Hazard	  Analysis	  Equation	  (Discrete	  Source	  Zones)	  
 

Because numerical propagation models are substituted for ground-motion 
attenuation relationships in PTHA, and because tsunami propagation paths often are 
complex, it may not be practical to define the distance pdf in the above equation. Instead, 
a discrete-source zonation scheme, like the Flinn-Enghdahl zones for earthquakes (Flinn 
and others, 1974), can be used in place of the f(r|ψi) term. 

The discrete source zone form of the PTHA equation is given by 
 

, 
 

where j is the zone index and i is an index that represents source type. The continuous 
distance variable (r) has been replaced by discrete source zones. Variation in the source 
location within a zone is included in the term 
 

 

Uncertainties	  
 

Given the current lack of data on submarine landslides, there are large 
uncertainties for each of the components of PTHA.  The largest uncertainty is most likely 
related to the long-term mean rate νij of mass failure occurrence in any given region.  
Although recent research has identified which parameters of mass failures are important 
for tsunami generation (for example, slide volume, thickness, duration), there is 
considerable uncertainty in defining the pdf for each of these parameters [that is, f(ψij) ].  
The complex effect of landslide dynamics on tsunami generation is discussed in the next 
section. 

State-of-the-art numerical modeling of tsunami waves can be used to calculate 
runup associated with particular submarine landslide parameters [that is, P(R>R0)| ψij) ]. 
Calculating this probability function, however, requires many runs for each source 
configuration of volume, duration, thickness, and such, thus requiring substantial 
computational resources. This may be the most tractable part of PTHA where submarine 
landslides are considered.   

Landslide Dynamics 
Generation of tsunamis by submarine landslides is a complex process that occurs 

through distinct temporal phases: failure, post-failure dynamics (for example, debris 
flows), and turbulent boundary-layer flow (turbidity currents). Because earthquakes 
trigger most tsunamigenic landslides, inertial displacements of the uppermost compliant 
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layer in response to strong-ground motion must be considered. Given that the conditions 
are met for failure to occur, it is likely that a shear dislocation develops at the base of the 
landslide and propagates in all directions to form the eventual head scarp (up slope) and 
initial sliding plane (down slope) (Martel, 2004; Petley and others, 2005). The primary 
concern for tsunami generation is the dynamics of the failed mass, which is described 
below. During the latter stages of mass movement failure, turbidity currents most often 
form. Because this process is characterized by turbulent boundary-layer flow and 
involves smaller changes in seafloor displacement, it is usually not influential in the 
tsunami generation process. 

Many and diverse types of landslides have been classified according to their 
physics and subaerial observational evidence. The most well-known classification 
scheme is that of Varnes (1978). There has been an effort to develop a detailed taxonomy 
of landslides, particularly of the flow type (Hungr and others, 2001). The basic types of 
mass movements include slow-moving Earth flows (sometimes termed landslides or 
slides in a specific connotation of the terms), topples, spreads, falls, and fast-moving 
flows (Locat and Lee, 2002). Two major concerns for tsunami generation are fast-moving 
submarine debris avalanches and debris flows. A recent classification of debris flows 
proposed by Coussot and Meunier (1996) is based on two criteria directly related to the 
mechanical properties of debris flows: solid/water fraction and material type (cohesive 
versus granular). This classification is seen as an important foundation for understanding 
the complex dynamics of debris flows that are governed by non-Newtonian rheologies. 

In understanding the physics of debris flows, two approaches developed for 
subaerial flows have been considered: viscoplastic fluid and mixture (or granular) theory. 
Viscoplastic fluid models have been used to describe submarine muddy debris flows, 
whereas mixture theory has been used to describe subaerial granular or two-phase flows. 
The latter has been incorporated into a coupled model for tsunami generation (Fernández-
Nieto and others, 2008). In adapting subaerial landslide dynamic models for the 
submarine environment, the main effect of having water as the ambient fluid, rather than 
air, is a reduction in gravitational forcing, owing to buoyancy. 

Because most tsunamigenic mass movements along continental slopes involve 
predominantly fine-grained sediment, the viscoplastic fluid model for muddy debris 
flows is a central model for tsunami generation. A clay content of only 10 percent or 
more is needed for debris flows to be adequately modeled by viscoplastic rheology 
(Coussot and Meunier, 1996; Coussot and others, 1998). The longitudinal momentum 
equation for laminar flow is given by 

 

, 
 

where ux is the velocity component in the x (down slope) direction, ρm is the density of 
the mud flow, p is the pressure (assumed to be hydrostatic), θ is the slope angle, and τ is 
the shear stress in the mud flow (Jiang and Leblond, 1993; Imran and others, 2001). The 
continuity equation for this system is 
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. 
 

Various nonlinear constitutive relations have been used to relate shear strain rate 
to shear stress for muddy debris flows (Coussot, 1997), including Bingham plastic, 
Herschel-Bulkley, and bilinear rheologies. The Bingham plastic fluid is characterized by 
a finite yield stress (τy) such that 

, 
 

where µ is dynamic viscosity and γ is the strain rate . The Herschel-Bulkley rheology is a 
power-law rheology (i.e., non-Newtonian): 
 

, 
 
where n and K are material-specific constants. When n=1, the Herschel-Bulkley rheology 
is equivalent to the Bingham-plastic rheology. The bilinear rheology (e.g., Locat and 
others, 2004) involves two viscous regimes of flow described by dynamic viscosities at 
low and high strain rates (µl and µh, respectively where µh < µl): 
 

, 
 

where τya is the apparent yield stress relative to the high strain-rate regime and γ0 is the 
reference strain rate given by 
 

. 
 

For these nonlinear rheologies, the no-slip boundary condition along the base of 
the debris flow results in two flow zones: a shear zone at the base of the flow, where the 
shear stress is greater than the yield stress, and a plug zone above where the yield stress is 
not exceeded. The boundary between the two zones is termed the yield interface. In 
formulating a solution to the momentum equations, the horizontal and vertical velocities 
and the horizontal velocity gradient are constrained to be continuous across the yield 
interface (Jiang and Leblond, 1993). 

To model granular mass movements that have a smaller proportion of fine 
sediment and water, the mixture theory that was developed for subaerial debris 
avalanches (Iverson and Denlinger, 2001) has been adapted in a few cases for the 
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submarine environment (Fernández-Nieto and others, 2008). For a two-phase solid/fluid 
mixture in which the fluid velocities and accelerations differ negligibly from the solids, 
the momentum equation is 

, 
where vs is the solid velocity, Ts and Tf are the stress tensors for the solid and fluid 
phases, respectively, and the density of the mass movement is calculated from the volume 
fractions (Vs and Vf) of each phase. The constitutive theory used is intergranular Coulomb 
friction, modified by pore pressure and Newtonian viscous fluid stresses. For high 
enough pore pressures, internal friction is reduced greatly, and the mass behaves 
viscously. It has been argued that mixture theory has limited application in the submarine 
environment because pore pressure diffusion is likely to be minimal and because a finite 
yield strength is needed to explain the thickness and mid-slope termination of many 
submarine debris avalanches (Coussot and Meunier, 1996; Elverhøi and others, 2005); 
however, mixture theory may be applicable in specific geologic environments, such as 
carbonate and volcanic-dominated islands, away from continental sources of clay. 
 
Probabilistic Approaches for Determining Landslide 
Rates 

Empirical	  Approaches	  
The direct or empirical method of determining submarine landslide probability 

relies on the dates of events identified in the geologic record. The method is derived from 
approaches used to determine earthquake probability from datable paleoseismic horizons. 
The methods described below yield probability and uncertainty estimates, most following 
an empirical Bayes’ method under a variety of assumptions. Bayes’ rule is given by 
 

 
 

where θ is the probability parameter of interest and z is the data. On the right-hand side of 
the equation, the numerator is the likelihood function L times the prior distribution, 
whereas the denominator is a normalization factor called the marginal probability. The 
left-hand side of the equation is the posterior distribution. 
 

Binomial-‐Beta	  Conjugate	  Prior	  
Assuming that the probability (p) of an earthquake on a particular fault or a 

landslide in a particular region is the same through time, then the problem of estimating p 
is that of estimating the probability of success in a Bernoulli trial, given a sample of 
outcomes of previous trials (Savage, 1994). The probability of m successes in n trials is 
then given by the binomial distribution 
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. 
 

The empirical Bayes approach is simplified greatly if a prior probability 
distribution that is “conjugate” to the likelihood function is chosen: that is, if the resulting 
posterior distribution is in the same distribution family (e.g., the exponential distribution 
family) as the prior distribution. The distribution pairs are called conjugate priors. The 
conjugate prior to the binomial distribution is a beta distribution. To simplify further, 
parameters of the beta distribution can be chosen to yield a uniform prior distribution 
(also known as the non-informative prior) with resulting mean and variance given by 

 
 

. 
 
Example 
 

If there is a geologic record of landslides occurring with inter-event times of 
12.25, 20.08, 21.02, 24.07, and 32.05 kyr., then the probability that the next landslide will 
occur within 26.5 kyr. of the last landslide is given by 
 

, 
 

with a mean probability of 0.71 and a 95 percent confidence interval ranging from 0.41 to 
0.98. 
 

Poisson-‐Gamma	  Conjugate	  Prior	  
Landslides could be assumed to follow a stationary Poisson process in which the 

occurrence of landslides is independent from one another (specifically, the number of 
occurrences in disjoint intervals are independent). This is a more restrictive assumption 
than for the Binomial-Beta method described above, but it yields more information. The 
conjugate prior to the Poisson distribution is the gamma distribution with scale parameter 
beta and shape parameter gamma. The resulting posterior distribution is given by 

 

. 
 

The hyperparameters are given by  
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where N is the number of landslides in observation period T (e.g., defined by a datable 
basal seismic horizon) and µ and σ2 represent the mean and variance of the rate parameter 
determined from the data (Mortgat and Shah, 1979; Campbell, 1982). 
 
Example 1 
 

In the Santa Barbara channel there are three landslides of unknown age identified 
on a seismic-reflection profile and above a horizon with a well-defined date of 170 ka 
(Fisher and others, 2005).  

 
 
The resulting distribution of possible mean return times (1/λ) is shown below. 
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The most likely mean return time is 68 ka, but the 95 percent confidence interval ranges 
between 29 and 154 ka (Geist and Parsons, 2010). 
 
Example 2 
 

In Port Valdez, 6 debris flows were imaged in seismic reflection data, all 
presumed to by younger the 6 ka (Ryan and others, 2010). The resulting distribution of 
possible mean return times (1/λ) is shown below: 
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The most likely mean return time is 730 years with a 95 percent confidence interval 
ranging between 410 and 1,300 years (Geist and Parsons, 2010). The rate of landslide 
occurrence in Port Valdez is significantly higher than offshore Santa Barbara. 
 

Monte	  Carlo	  Method	  
 

The Monte Carlo and Baysian inference methods described below are developed 
for a situation in which probability is estimated from a small number of events, each of 
which has been dated with some uncertainty. For example, a drill hole penetrates several 
landslide events for which there are dates for the strata above and below, bracketing the 
age when a given landslide occurred (e.g., Normark and others, 2004). The conjugate 
prior methods described above are primarily for the situation in which there is only a 
datable horizon below a sequence of landslides.  
 

The Monte Carlo method developed by Parsons (2008) relies on sampling a given 
distribution a large number of times to determine the most likely distribution parameters 
that fit the observed range of dates available for each event and the range of uncertainty 
in the distribution parameters. Unlike other empirical methods, the Monte Carlo method 
is not derived directly from Bayes’ rule. 
 
Example 
 

Several paleoseismic horizons have been dated in southwest Washington 
representing large earthquakes along the Cascadia subduction zone (Atwater and others, 
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2004). The Monte Carlo method is used to estimate the two parameters for a Brownian 
Passage Time (BPT) distribution for earthquake occurrence (Matthews and others, 2002). 
The distribution parameters of the BPT distribution are the mean inter-event time and 
apreriodicity (or coefficient of variation).  

 
 

For increments of each distribution parameter, a sequence of seven random 
samples is drawn from the associated probability distribution to see if each sample falls 
within the age range for each event. If no samples lie between events or in the open 
intervals before the first event and after the last event, then one “hit” is recorded for that 
set of distribution parameters. This is repeated millions of times for each set of 
distribution parameters, and the total number of hits is tallied, yielding the contour plot 
displayed above. The results yield mean, median, and modes of the most likely 
distribution parameters and a range of uncertainty. In the figure above, “mean from the 
record” is the mean interevent time using the center age of each event. 
 

Bayesian	  Inference	  Method	  
Similar to the Monte Carlo method, the Bayesian Inference Method was 

developed by Ogata (1999) to determine the best fit distribution parameters given a 
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sequence of geologic events with uncertain ages. In this case, Bayes Rule is used in the 
opposite sense, where the most likely occurrence times are estimated by way of the 
posterior conditional probability distribution: 
 

, 
where 
 

 
 
is the likelihood function. The semicolon separates the fixed parameter(s) of the inter-
event distribution model (theta) and the data (estimated times of occurrence). 
 

 
 

are the probability densities for the landslides occurring within a particular age range. 
Several different prior distributions were tested by Ogata (1999), including the Dirac 
delta function (centered data), a uniform distribution, and a triangular distribution. 
 

 
 

is the integrated likelihood of the parameter θ. 
The integrated likelihood is key to the Bayesian Inference Method in estimating 

the parameters of the inter-event distribution model and in evaluating competing models. 
The model parameters are determined by maximizing the integrated likelihood function 
with respect to theta. In the case that the occurrence times are known exactly, the 
integrated likelihood reduces to the ordinary likelihood function. Because there is 
uncertainty in each of the dated landslides, however, the multiple integration expressed in 
the above equation needs to be computed, most often using numerical methods. Once 
theta is estimated, then the most likely occurrence time for each landslide can be 
determined through the posterior distribution.  In addition, once the likelihood is known, 
then the goodness of fit for the distribution model and priors can be evaluated using the 
Akaike Information Criterion (AIC). 
 
Example 

The example below is from Ogata (1999), in which he uses the Bayesian 
Inference Method on 11 earthquake dates along the West Nagano Basin fault. Two of the 
dates are exact (historical earthquakes), whereas the rest are geologic dates with 
associated uncertainties. The table below lists the results of the Bayesian Inference 
Method using different inter-event distribution models (exponential, lognormal, etc.) and 
three different prior distributions. By using the AIC, a decision can be made as to which 
model and which model parameters best fit the data. (See the comment below the table 
for an explanation of superscripts in the AIC column.) MRT is the mean return time 
associated with each case. 
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Geotechnical	  Approach:	  From	  Earthquake	  to	  Landslide	  
The temporal development of slope failure is fundamental to understanding the 

landslide process and also is important to the assessment of landslide-generated tsunami, 
whose runup depends to a large extent on the size of the landslide (for example, Geist and 
others, 2009a). Several studies have identified retrogressive failures (for example, 
Harbitz, 1992; Locat and others, 2009), but it is unclear whether these failures occurred 
during the same event or were separate in time. In the absence of direct observations, 
scientists have made assumptions about failure dynamics. The most common assumption 
is that a landslide process is a cascade or an avalanche process (Densmore and others, 
1998; Guzzetti and others, 2002; Malamud and Turcotte, 2006) known as self-organized 
criticality (Bak and others, 1988; Hergarten, 2003). The cascade process assumes that 
failure nucleates in one or more locations, spreads to surrounding regions, and can 
coalesce to generate large failures. This process often is simulated by cellular-automata 
models (e.g., Malamud and Turcotte, 2006). The area-frequency distribution of the 
cascade process is an inverse power law (e.g., Guzzetti and others, 2002).  By its nature, 
it is an additive process whose duration can vary widely and cannot be determined at the 
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start of the process (Turcotte and Malamud, 2004). The most famous example of an 
additive process in the Earth sciences is the frequency-magnitude relationship of 
earthquakes (Gutenberg and Richter, 1944): 

logN =a-bM 
where N is the number of earthquakes with magnitude greater than M occurring during a 
given time, and a and b are constants. This distribution implies that earthquakes grow 
from nucleation points and their final magnitude cannot be predicted (Stein and 
Wysession, 2003, p. 274).  

An inverse power law distribution also was invoked for different physical aspects 
of subaerial (Sugai and others, 1994; Dai and Lee, 2001; Guzzetti and others, 2002; 
Dussauge and others, 2003; Malamud and others, 2004) and submarine (ten Brink and 
others, 2006a; Micallef and others, 2008) landslides. In the majority of these publications, 
however, the inverse power law distribution applies only to a truncated portion of the 
dataset (Stark and Hovius, 2001). To fit the entire range of landslide areas, Malamud and 
others (2004) proposed a three-parameter inverse Gamma distribution and Stark and 
Hovius (2001) proposed a double Pareto function. The misfit of an inverse power law 
distribution to the portion covering the smallest sizes was attributed to undersampling 
(Burroughs and Tebbens, 2001; ten Brink and others, 2006a), to an artifact of the 
mapping resolution (Stark and Hovius, 2001), or to the transition from a friction-
controlled resistance to a cohesion-controlled resistance (Guzzetti and others, 2002). 

A few landslide datasets, however, have distributions that are not easily 
approximated by an inverse power law distribution. Issler and others (2005) obtained a 
logarithmic distribution for the volume of depositional lobes from the Storegga slide. 
Lognormal distributions were found for the areas of landslides in Kashmir (Dunning and 
others, 2007) and for volumes of deposits of prehistoric turbidity currents in Italy (Talling 
and others, 2007). Chaytor and others (2009) obtained a lognormal fit to the size 
distribution of the areas and volumes of 106 submarine slope failure along the Atlantic 
continental slope (R2=0.9938) (Figures 1 and 2). Many of the landslides, especially open-
slope landslides, initiate on these low-angle slopes (<2 degrees) (Twichell and others, 
2009). The slope of the continental margin could be further characterized as monotonic:  
the direction of greatest slope is oriented in the same general direction (seaward) over a 
large area (fig. 1). 
 

Hypothesis	  
A simple earthquake-triggered landslide mechanism can produce area 

distributions that can be approximated by a lognormal distribution. Although an inverse 
power law can sometimes approximate the tails of these distributions, the physical 
significance of an inverse power law distribution for landslides is questionable. For 
example, it may be incorrect to assume that during an event the failure always grows 
from single or several point-failures and that its final size is unpredictable. 
(Circumstances where the final landslide size may be unpredictable cannot be discarded. 
One such mechanism is discussed with respect to Puerto Rico.) The failed material may 
coalesce into debris flows and turbidity flows as it moves downslope (Tripsanas and 
others, 2008), but the downslope movement itself does not excavate significant amounts 
of new material. 
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Although it is difficult to assess the general validity of this hypothesis, at least one 
historical record suggests that it could be correct in some cases. Multibeam bathymetry 
and side-scan sonar surveys of the 1929 Grand Banks landslide, which was triggered by a 
M7.2±0.3 earthquake, did not reveal evidence for a single major headwall scarp, or for a 
massive slump region (Piper and others, 1999; Mosher and Piper, 2007; D. Mosher, 
written comm., 2007). Two-thirds of the total failure area were characterized by patchy 
failures, with intervening areas showing no evidence of failure. Had the failure been a 
downslope or upslope cascading process from one or several nucleation points, it is likely 
that the entire area would have shown evidence of seafloor failure. The seismological 
record also is compatible with the hypothesis that failure occurs simultaneously in the 
area affected by shaking. If landslides nucleate in one location and then propagate along 
the failure plane similar to earthquake propagation, we would expect large double-couple 
landslide earthquakes to occur when a large submarine slope failure takes place; 
however, such earthquakes were not detected during the 1929 Grand Banks (Bent, 1995) 
or the 1998 Papua New Guinea tsunamigenic landslides (Okal and Synolakis, 2001).  
 

Simulations	  of	  Earthquake-‐Induced	  Landslides	  
To test the viability of the hypothesis, Monte Carlo simulations of earthquakes 

and their expected failure areas were generated and their area distribution was compared 
with the observed distribution along the U.S. Atlantic continental margin (figs. 1 and 2). 
The maximum expected failure area was estimated using a slope stability analysis with 
undrained strength properties following the method and parameters outlined by ten Brink 
and others (2009c). The method is reviewed here briefly. 
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Figure 1. A, Slope gradient of the U.S. Atlantic margin; B, Slope direction 

(known as aspect) of the Atlantic margin. 
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Figure 2. Cumulative distribution of landslide areas along the Atlantic 

margin and their fit by lognormal function. 
 
Slope failure of sediments is assumed to initiate when the combined static 

downslope gravitational stress plus the dynamic earthquake loading, exceeds the 
undrained shear strength.  For enough cycles, this induces permanent strain in the slope.  
The vertical ground-motion component contains little of the total energy of shaking and, 
therefore, is ignored in strong-motion studies (Harp and Wilson, 1995). The critical 
pseudo-static stress (a simplified representation of the dynamic loads) depends on the 
slope, sediment density, and the ratio of shear strength to vertical load; however, to cause 
significant displacement of the material, sediment shear strength, (ky), must be ≤ 15% of 
the peak earthquake acceleration (kPSA) (Hynes-Griffin and Franklin, 1984; Lee and 
others, 2000). The peak earthquake acceleration as a function of distance from the 
rupturing fault (kPSA(r)) used here is based on empirical and hybrid-empirical attenuation 
relationships derived from accelerograms and adjusted for the eastern U.S. (Campbell, 
2003). The attenuation relations assume hard rock with shear-wave velocity of 2,800 m/s. 
A site amplification of 3.5 is used (Boore and Joyner, 1997) to account for the measured 
shear-wave velocity of 300 m/s of shallow sediments on the Atlantic continental slope. A 
peak spectral acceleration at a period of 0.75 s was chosen because the thickness of the 
sliding layer is typically 20-100 m. More details about the choice of these and other 
parameters are provided by ten Brink and others (2009c).  The maximum failure distance 
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from a rupturing fault (rmax), therefore, is the distance at which the modified earthquake 
acceleration is equal to the sediment shear strength, 

3.5 x 0.15 x kPSA= ky. 
The maximum slope failure area, AL, can be calculated by using the maximum 

distance to failure, rmax. The maximum failure area is, to a first approximation, a rectangle 
containing the fault trace, whose length is the fault length L and whose half-width is rmax, 
plus two half circles with radii of rmax at either end of the fault as given by 

AL= p rmax
2 + L x 2 rmax. 

Fault rupture length (L) as a function of earthquake magnitude (M) is based on the 
empirical relationship of Wells and Coppersmith (1994) for all faults,  

L = -2.44 + 0.59 M  
The calculated area as a function of magnitude is a maximum failure area and assumes 
uniform energy release along the fault. To further simplify the simulations, a generic 
depth profile is assumed (fig. 3), which is averaged qualitatively from 6 depth profiles of 
the U.S. Atlantic continental margin (fig. 1) and which represents a several thousand 
kilometer sector of the margin. The ruptured faults are assumed to be parallel to the shelf 
edge to reduce the simulations to 2D. Deviations of fault orientation from this idealized 
orientation will be accounted for later. 
 

 
Figure 3. Simplified view of the continental margin that was used for Monte 

Carlo simulations. 
 

The Gutenberg-Richter (G-R) frequency magnitude distribution (logN =a-bM) 
was used to generate the earthquake distribution. The G-R distribution is valid for 
sufficiently long time intervals and large areas. Observed slope failures along the U.S. 
Atlantic continental margin and in many passive margins have likely happened over a 
period of several tens of thousands of years (Lee, 2009). For the U.S. Atlantic continental 
margin, it was assumed that the U.S. east coast, from 1,300 km inland of the shelf edge to 
500 km seaward of the shelf edge, is a sufficiently large area to follow the G-R 
earthquake distribution. In the model, the 150-km-wide continental slope begins 150 km 
seaward of the coast, which mimics the geometry of the U.S. Atlantic continental margin.  

Earthquakes with magnitudes between 4.5 and 7.5 were placed at random 
locations across this area. The number of earthquakes in each magnitude follows the G-R 
magnitude distribution. A total of 2,348 earthquakes were placed at magnitude intervals 
of 0.2 to 0.3, assuming that for every one M7.5 earthquake, there are 10 M6.5 
earthquakes, 100 M5.5 earthquakes, and so on. Magnitudes greater than 7.5 were not 
considered because the maximum earthquake magnitude on the U.S. east coast is 
assessed to be M7.5 (Frankel and others, 1996; Mazzotti and Adams, 2005). For 
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earthquakes with magnitudes <4.5, the slope stability analysis does not predict the 
generation of landslides in slopes ≤6 degrees. This prediction is in agreement with 
observations of earthquake-induced subaerial landslides in the U.S., which show that 
earthquakes with local magnitude ML<4 do not generate landslides, and with inferences 
suggesting that rock slumps, block slides, rapid soil flows and subaqueous landslides are 
not generated by earthquakes with magnitude ML<5 (Keefer, 1984). 

It could be argued that the dissected upper continental slope can give rise to many 
more small landslides than is considered with this model of a generic slope. An 
examination of slope dip offshore of Chesapeake Bay shows that slope dissection by 
canyons whose walls exceed 6 degree slope is generally limited to a ~10-km-wide strip of 
the slope (inset in fig. 1). The probability of any of the 1,000 M4.5 earthquakes occurring 
in this 10 km-wide-strip of the 1,500 km-wide-zone of simulation is 1,000*10/1,500 km, 
or 2 earthquakes will be added on average to the simulation results. If M4 earthquakes 
can generate landslides in slopes that exceed 6°, 4 additional small earthquakes will be 
added; however, the canyon walls, which are cut into pre-Pleistocene rocks (Pratson and 
others, 1994), also have a higher strength than was considered in the simulations. The 
increased wall strength means that the ground-shaking amplification is likely to be 
smaller than the site amplification factor of 3.5 used in the simulations, and therefore, the 
peak ground acceleration (kPSA) necessary to cause significant failure should be larger 
than calculated in these simulations. The area distribution of landslides along the Atlantic 
continental slope will, therefore, probably not change significantly because small 
earthquakes cannot generate sufficient ground shaking to cause landslides in these walls. 
 

Results	  
 
1. Spatial distribution of earthquakes that could generate landslides 
 
The maximum failure area for each of the earthquakes was calculated using the slope 
stability analysis (ten Brink and others, 2009b; ten Brink and others, 2009c). Earthquakes 
that are located within the continental slope generate slope failure; earthquakes that are 
far away from the continental slope do not generate slope failures. Those earthquakes that 
are in the vicinity of the landward and seaward edges of the continental slope generate 
smaller regions of slope failure within the continental slope. For example, an M7.5 
earthquake must be within 100 km of the continental slope to cause slope failure (ten 
Brink and others, 2009c). This earthquake location criterion allows us to define a spatial 
“danger zone” for earthquake-generated landslides. Earthquakes falling outside this zone 
are not expected to generate landslides and tsunamis. 
 
2. Landslide size distribution in Atlantic reflects magnitude of ground shaking 
 
The cumulative distribution of the earthquake-induced landslides from 2,348 simulated 
earthquakes ranging from M4.5 to M7.5 is plotted on a log-log plot (fig. 4A). Note that 
only 80 to 150 landslides are generated per simulation because the majority of the 
earthquakes are located too far inland to affect the continental slope. Because the location 
of earthquakes cannot be predicted, the calculation is repeated 1,000 times with 1,000 
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different random distributions of earthquake locations. The result (fig. 4B) shows a 
consistent cumulative area distribution, with abundant landslides having areas between 
10 and 100 km2, fewer landslides with areas <3 km2, and few landslides with areas 
>1,800 km2 (fig. 4C). The 1,000 modeled landslide distributions fit well a lognormal 
distribution (R2>0.97). Hence, the paucity of small landslides relative to the number 
predicted by an inverse power law relationship may not be the result of undersampling, 
but instead may be caused by the fact that small magnitude earthquakes cannot generate 
landslides unless the seafloor slope is very steep, whereas the areal extent of seafloor 
with steep slopes is small. Although some of the realizations show a linear tail of 
cumulative area distribution, the curve does not have a distinct slope break that would 
allow a certain range of the population to be fit by an inverse power law curve.  
Simulations with a limited earthquake magnitude range (M4.5-M6.3) show a good fit to 
the area distribution of 106 landslides along the Atlantic continental slope (fig. 4D). The 
observed good fit suggests the possibility that the shape of the observed area distribution 
of submarine landslides may be indicative of the range of earthquake magnitudes in that 
area. Similar studies in other regions are needed to verify this suggestion. 
 

 
Figure 4. See text for description. 

 
The failure area calculated by the slope-stability analysis is a maximum area. It is 

likely that the fault does not have a uniform energy release and only part of the area fails 
during an earthquake, the rheology and pore pressure are not spatially uniform, or the 
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fault orientation is not parallel to the strike of the margin, as in our simplified 
simulations. To mimic these situations, the predicted failure area is decreased by 
multiplying each failure area from each earthquake by a random factor ≤1. In the absence 
of information about the probability distribution of this random factor, a range of 0.3-1 
was assumed, with all values between 0.3 and 1 having an equal probability. The 
observed landslide distribution along the U.S. Atlantic margin is plotted at the center of 
the 1,000 simulated curves that were generated with a multiplier range between 0.3 and 1 
(fig. 4D), whereas it has smaller areas relative to most curves generated by simulations 
where the maximum area is always expected to fail (multiplier of 1; fig. 5). The 
comparison to observations therefore, suggests that slope failures generally do not reach 
their maximum calculated area, as was expected intuitively. 

 

 
Figure 5. See text for description. 
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3. Power law distribution of landslides north of Puerto Rico 
 

Translational slides of noncohesive material, such as along the U.S. Atlantic 
margin, may undergo simultaneous slope failure over a large area during ground shaking; 
however, other submarine landslides may obey an inverse power law. For example, the 
inverse power law distribution of areas and volumes of submarine landslides north of 
Puerto Rico (ten Brink and others, 2006a) may be controlled by the distribution of 
fractures and not by earthquake magnitude. These mostly rotational landslides erode the 
edge of a massive, tilted carbonate platform. Fissures and fractures observed in 
multibeam bathymetry images at the edge of the platform (ten Brink and others, 2006b) 
probably develop from tensile stresses and grow as a result of carbonate dissolution in a 
system of seawater circulation. Slope failures during earthquakes may follow these 
fractures. Tensile fracture systems (Katz and Aharonov, 2006) and faults (Scholz and 
Cowie, 1990) have been shown to obey an inverse power law distribution in the lab and 
in the field, attesting to their progressive development.  

 

Summary	  
The area distribution of submarine landslides along the U.S. Atlantic continental 

slope and other supporting evidence was used to argue that landslides initiate 
simultaneously throughout the area affected by ground shaking. The slide products 
(debris flow, debris avalanche, turbidities) do not entrain significant volumes of new 
material during the runout. This hypothesis contradicts previous interpretations of 
landslides as a cascading avalanche, or self-organized critical process, where the 
landslide nucleates in one or few locations and propagates from there to the entire 
landslide region. For a given earthquake magnitude, the predicted maximum failure area 
from slope stability analysis is comparable to the maximum observed area that 
encompasses all subaerial landslides from a single earthquake-triggered event. The many 
individual landslides within the observed land area can be perceived in the context of the 
hypothesis for this study as many independent nucleating points triggered by a single 
event. The hypothesis presented here, implies that the maximum area of landslides 
generally is predictable from the characteristics of the triggering event, however, how 
much of that area will fail depends on local variations in slope angle, material strength, 
and pore pressure, and the presence of pre-existing fractures. 

 

Challenges  
 There are a multitude of challenges for incorporating landslides into PTHA, 
particularly at design probabilities of interest to the NRC.  For example, the conventional 
PTHA formulation assumes independence among source parameters—an assumption that 
may not be true for landslides. 
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Incorporation	  of	  Tides—Nonlinear	  Effects	  
The tidal stage during a tsunami cannot be predicted and is, therefore, a source of 

aleatory uncertainty in probabilistic calculations. Mofjeld and others (2007) recognized 
that the tsunami waves occur over a long duration and can span several tidal cycles. In 
this method, the tidal probabilities are integrated with the tsunami-probability 
calculations. 
 

Linear	  Method	  
Consider the far-field case where only one earthquake scenario (magnitude, slip, 

area) is considered per source region (j). For each tsunami amplitude Aj (corresponding to 
each j source), the tides produce a probability density function f(y,A) that describes the 
distribution in height of the maximum waves, where y is the total wave height including 
tsunami and tidal amplitudes. To get the exceedance rate for the jth source as a function 
of y, the corresponding pdf is integrated as follows: 

. 
 
To get an explicit form for F(y,A), a Gaussian distribution (Mofjeld and others, 2007) is a 
reasonable approximation to the pdf: 
 

 
where 

 

. 
 
The parameters C, α, β, C', α', and β' are specific to the tides at a given location (Mofjeld 
and others, 2004). The integral F(y,A) then becomes 
 

, 
 

where erf(z) is the standard form for the error function. 
The rate at which y'≥y for a given source (λ) is the mean rate of the design 

earthquake (ν) multiplied by Fj: 
 

. 
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If, for all source regions, there is only one design earthquake per region, then the 
aggregate exceedance rate would be (since we are dealing with discrete regions): 
 

. 

Effect	  of	  Nonlinearity	  
The preceding methods assumed linear superposition of tide and tsunami waves 

and are, therefore, treated as being independent. For landslide tsunamis that can be 
nonlinear, independence between the two phenomena breaks down. In terms of the 
notation described in the Linear Method above, tsunami amplitude (A) depends on the 
tidal constants. 

The joint probability of tides and tsunamis considering the nonlinear effects can 
be determined by Monte Carlo methods in which a large number of numerical 
simulations are done under different tidal conditions. The computational resources 
required to determine the probability distribution in this way are likely to be substantial 

It may be possible to use copulas to determine the joint distribution in place of 
Monte Carlo methods. Copulas contain all the information of the dependency structure 
for a multivariate distribution. Sklar’s (1959) representation theorems states that a joint 
cumulative distribution function H(x,y) can be represented by 

 

, 
 
where F(x) and G(y) are marginal distributions and C is the copula. There are a number 
of copulas that can be chosen that reflect the dependence structure between F(x) and 
G(y), rather than the distributions themselves. Examples of the use of copulas can be 
found in hydrology (Favre and others, 2004; Genest and Favre, 2007) and seismic hazard 
analysis (Page and Carlson, 2006) and conceivably can be adapted for use in PTHA. 

Temporal	  and	  Spatial	  Clustering	  of	  Sources	  
Temporal and spatial clustering beyond what is predicted by a Poisson point 

process is not accommodated in the basic PTHA Framework. Temporal and spatial 
clustering in landslides can arise from two causes: seismic triggering of multiple 
landslides and retrogressive failure. For the former, the temporal scale of clustering is 
small, approximately on the order of ground-shaking duration, whereas the spatial scale 
of clustering can encompass a broad region. In contrast, for retrogressive failures, the 
spatial scale of clustering is limited to the main failure dimensions, whereas the temporal 
scale can range from hours to days (Masson and others, 2006) or to longer time scales. 

During strong shaking from an earthquake, multiple discrete regions can fail. The 
failure can be distributed over a wide region and occur nearly simultaneously or it can be 
delayed, depending on material and pore-pressure properties of the sediment. An example 
of spatial clustering of landslides from seismic triggering is the 1929 Grand Banks 
landslide (Piper and others, 1999). Lynett and Jimenez (2011) (see also Haugen and 
others, 2005) have developed a 1HD cross-shore model where, for a given number of 
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individual slides, parameters such as downslope width and delay of initiation are 
randomized. Hazard curves can then be compared to that for a single-body landslide to 
assess the effect of source complexity on probabilistic assessments of wave height. 

Temporal and small-scale spatial clustering can occur from retrogressive failure 
following a large landslide or other localized geological conditions that preferentially 
result in failure. Modeling studies have indicated that retrogressive failure occurs after 
the main failure in the presence of shear softening (Masson and others, 2006). 
Retrogressive failures appear to occur most frequently on low-slope continental margins, 
although volcanic flank failures, such as in the Canary Islands, also appear to be 
retrogressive. Perhaps the best analyzed retrogressive failure is the Storegga landslide, 
which appears to have been initiated at the lower slope of the Norwegian margin 
(Haflidason and others, 2004). 

There are few analogs in PSHA that could be used to formulate a PTHA model 
that involves clustered sources. The incorporation of spatial and temporal cluster into 
PSHA methodology has been attempted only recently, owing to the complexity and time-
dependent nature of the earthquake-occurrence model required. One method is to 
calculate hazard probabilities directly from multiple, synthetic-earthquake catalogs 
according to a particular seismicity model, rather than from the conventional PSHA 
equations. The seismicity model can be either Poissonian or, in the case of clustering, the 
Epidemic Type Aftershock Sequence (ETAS) model as proposed by Beauval and others 
(2006). The Every Earthquake a Precursor According to Scale (EEPAS) model also has 
been modified to account for clustering in PSHA studies (Rhoades, 2009). Both the 
ETAS and EEPAS models are tuned according to past seismicity. It is possible to modify 
these models to develop a PTHA model that includes clustered landslides, although much 
more data would be needed to tune these models and accommodate the additional PTHA 
model parameters. Aftershock probabilistic seismic hazard analysis (APSHA) (Yeo and 
Cornell, 2009) conceivably could be adapted to calculate the hazard from an active 
landslide region. 

Nonstationarity	  
The occurrence rate of major continental slope landslides appears to be variable 

and linked to glacial cycles. Lee (2009) indicates that the rate is approximately constant 
from the last glacial maximum to 5,000 years after the end of the glaciation. Since that 
time, the rate of major submarine landslides appears to be decreasing. Lee (2009) 
ascribes the increased rate of major landslides during glaciation to the formation of thick 
sediment deposits on the upper continental slope and to postglacial rebound seismicity 
serving as a landslide trigger shortly after glaciation ends. Later in the interglacial cycle it 
is thought most of the unstable slopes have already failed resulting in lower landslide 
rates compared to glacial and postglacial times. Considered over the entire glacial cycle, 
landslide occurrence rates are nonstationary; the source rate-term in PTHA Framework 
equations is a function of time: 

 
. 

 
Most PTHA applications are designed either for annual probabilities or for time 

intervals measured in decades (variable T in PTHA Framework). Nonstationarity at time 
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scales of glacial cycles will not, therefore, significantly affect the PTHA calculation 
directly. The difficulty, however, is accurately assessing the present-day rate. Using the 
dates of multiple submarine landslides that span glacial cylces in a particular source 
region, binning and a curve fitting method would need to be applied to the data in order 
to estimate the present-day landslide rate. Because of a lack of data in most source 
regions, present-day rate estimates would be prone to significant uncertainty. The other 
option is to use age dates from similar type slides over a broad region (or even globally), 
subject to the ergodic assumption. Even using the ergodic assumption, however, it is 
questionable whether there is enough data to estimate present-day landslide rates over the 
past several thousand years. When considering the entire submarine landslide dataset 
extending back through the last period of glaciation, only landslides under similar glacial 
environments should be included, so as not to break the ergodic assumption. 

Ergodicity	  
In estimating certain source parameters or their uncertainty, it often is necessary 

to assume that the physical process (landslide, earthquakes, and other geologic processes) 
is ergodic. Although the ergodic theorem originating from statistical physics is complex 
and multifaceted (Anosov, 2001), one important application of the theory is that the time 
average of a process (x) at a particular geographic point is equal to the average at a 
particular time (t0 ) over an ensemble of points (Beichelt and Fatti, 2002): 
 

. 
 
For natural hazards, this allows replacing an estimate of the source or hazard statistics at 
a particular location where there is limited knowledge throughout time with the statistics 
of an ensemble of known source or hazard variables over a broad region (or even 
globally). 

An example of where the ergodic assumption is used for earthquakes is estimation 
of corner moment for a particular fault. Because earthquake catalogs are limited at large 
magnitudes for a particular fault zone or fault segment throughout time, it is necessary to 
analyze the statistics of corner moment for a number of faults around the world (Bird and 
Kagan, 2004). However, Bird and Kagan (2004) note that different types of faults 
(oceanic transform faults, subduction zones) are separated because of differences in 
tectonic environment (stress, thermal structure, and so on) (see also Pisarenko and 
Sornette, 2003). Grouping all subduction zones together, Bird and Kagan (2004) were 
able to estimate a corner-moment magnitude of 9.58. Even with the expanded catalog of 
subduction zone earthquakes, however, uncertainty is still difficult to estimate. Bird and 
Kagan (2004) indicate 95 percent confidence limits of 9.12-? (upper confidence limit not 
found) using a merged 20th century earthquake catalog and 9.12-10.06 using a seismic-
moment conservation argument. 

The same type of analysis could be performed to estimate submarine landslide 
recurrence, although it is unclear what geologic factors are key to defining the ergodic 
ensemble. If there are multiple dates in a given region where the offshore sediment 
composition, tectonics, ground shaking, and so on are similar such as in southern 
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California, the age dates of multiple landslides within in the region can be grouped 
together to estimate the recurrence of landslides (Lee and others, 2004). For a global 
ensemble, however, differences in sediment type (clastic vs. carbonate), tectonic 
movement (passive margin versus active movement as in Puerto Rico), glacial activity, 
and peak ground acceleration must be taken into account. Too large of an ensemble can 
result in ergodicity breaking where the assumption no longer applies. This is discussed in 
the context of estimating uncertainty in the seismic attenuation relationship for 
earthquake ground motion studies by Anderson and Brune (1999). Lutz (2004) indicates 
that physical systems that follow Lévy Law distributions may also exhibit ergodicity 
breaking. Although rigorously proving the ergodic assumption for complex systems is 
difficult, the assumption should be examined for specific situations to determine its 
domain of applicability. 

 

Future Science Strategies 
 There are specific aspects of assessing the hazard of landslide-generated tsunamis 
that are currently feasible owing to recent research results and discussions held during the 
NRC/USGS workshop.  These aspects include identifying and characterizing significant 
submarine landslides along U.S. continental margins, although there are critical gaps in 
multibeam bathymetric coverage that need to be filled in.  Care must be taken to avoid 
false identification of landslides (Lee and others, 2002).  In addition, there are cases in 
which bathymetric evidence of source regions is lacking for past tsunami events in which 
a significant landslide trigger was thought to be present, suggesting that statistical 
censoring may be a significant issue in the inventory of significant tsunamigenic 
landslides.  It also is currently feasible to date submarine landslides (Normark and others, 
2004).  For any given landslide, however, the uncertainty in age dating depends on 
stratigraphic relationships among failed sediment, characteristics of overlying and 
underlying strata, and availability of dateable material.  More research is needed to refine 
current capabilities in identifying and dating submarine landslides. 
 There are a few regions along U.S. continental margins where it may be possible 
to estimate the recurrence rate for submarine landslides from empirical methods.   This 
requires either a stratigraphic record of past landslides (Fisher and others, 2005; Ryan and 
others, 2010), or that the ergodic hypothesis is true for a region where there is a sufficient 
spatial record of landslides. It may be possuble to estimate the probability of occurrence 
of significant landslides, assuming the landslides occur according to a Poisson process.  It 
also may be possible to infer the rate of submarine landslides from slope stability 
arguments and the probability of offshore ground shaking (ten Brink and others, 2009c).  
There is, however, some indication of temporal and spatial clustering and changes in 
occurrence with glacial cycles (Lee, 2009) that may invalidate a stationary Poisson 
assumption.  Much of the clustering is unquantified, except for well-studied regions, such 
as Storegga (Haflidason and others, 2004; Haflidason and others, 2005). 
 There is currently insufficient information with which to incorporate submarine 
landslides into PTHA at low design probabilities of interest to the NRC.  Challenges 
include dependency among landslide-source parameters, modeling landslide dynamics in 
relation to tsunami generation, aggregating tidal probabilities with nonlinear tsunami 
waves, nonstationary landslide rates, temporal and spatial clustering, and whether or not 
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the ergodic hypothesis holds for landslides and under what conditions.  Acquisition of 
more age dates for submarine landslides along the U.S. continental margins is key to 
address many of these challenges. 
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Appendix 
Agenda	  
Thursday Morning Session: Landslide Geometry & Recurrence 
8:30 Coffee/Breakfast & Registration 
 
9:00  Welcome (Walter Barnhardt, Woods Hole Science Center Director) 
9:05 Logistics, Introductions, Workshop Objectives (Uri ten Brink and Eric Geist) 
9:10 NRC perspective (Annie Kammerer) 
 
9:15 Identifying Submarine Landslides & Their Timing (Homa Lee) 
 
10:00  Overview of Atlantic & Gulf of Mexico Landslides (David Twichell)  
 
10:45  Coffee break 
 
11:00 Determining the Age and Recurrence Time of Submarine Landslides: Successes 

and Challenges (Jason Chaytor) 
 
11:45 Sediment Transport Processes Associated with Landslides (Danny Brothers) 
 
Thursday Afternoon Session: Landslide Mechanics 
1:30 Landslide Initiation: Earthquakes and Landslides (Uri ten Brink) 
 
2:15  Best Practice Recommendations for Geotechnical Site Characterization of 

Cohesive Offshore Sediments (Don DeGroot)  
 
3:00  Coffee break 
 
3:15  Geomorphological and Geotechnical Considerations Towards Tsunamigenic 

Submarine Slide Risk Assessment (Jacques Locat) 
 
4:00  Modeling Tsunamigenic Landslides with Shallow-Flow Equations 

(David George) 
 
Friday Morning Session: Modeling Landslide Tsunamis 
8:30 Coffee/Breakfast 
 
8:40  Welcome (Eric Geist) 
 
8:45 Landslide Tsunami Generation (3D) and Propagation (2D) (Juan Horrillo) 
 
9:30  Recent modeling Work for Landslide Tsunami Generation and Propagation 

 (Stéphan Grilli) 
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10:15  Coffee break 
 
10:30 Probabilistic Assessment of the Tsunami Induced by a Submarine Landslide 

(Pat Lynett) 
 
Friday Session: Probability of Landslides and Landslide Tsunamis 
11:15  PTHA Based on PSHA: Methodology and Applications (Frank González)  
 
1:00 Probabilistic Tsunami Hazard Analysis (Hong Kie Thio) 
 
1:45  Proposed Methodology for a Probabilistic Tsunami Hazard Assessment from 

Submarine Mass Failures on the U.S. East Coast (Chris Baxter) 
 
2:30  Coffee break 
 
2:45 Mapping the Probability of Earthquake-Induced Submarine Slope Failure Along 

the U.S. Atlantic Margin: A First-Order, Second-Moment Approach (Eugene 
Morgan) 

 
3:30  Summary: Approaches & Challenges of Incorporating Submarine Landslides into 

PTHA (Eric Geist) 
 
4:15  Feedback and Discussion with NRC (Henry Jones and Annie Kammerer) 
 
4:45  Wrap-up: Identifying Gaps in Observations and Theory (Eric Geist and Uri ten 
Brink) 
 



 

 43 

Abstracts	  and	  Presentations	  	  
Workshop presentations and abstracts written by the presenters are given in the order 
indicated in the agenda below. 


